Sensitivity and uncertainty analysis of a plant-wide model for carbon and energy footprint of wastewater treatment plants
نویسندگان
چکیده
This paper presents the sensitivity and uncertainty analysis of a mathematical model for Greenhouse gas (GHG) and energy consumption assessment from wastewater treatment plants (WWTPs). The model is able to simultaneously describe the main biological and physical-chemical processes in a WWTP. Specifically, the mathematical model includes the main processes of the water and sludge lines influencing the methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions. Further, the process energy demand and the energy recovery are also taken into account. The main objective of this paper is to analyze the key factors and sources of uncertainty influencing GHG emissions from WWTP at a plant-wide scale. The results show that influent fractionation has an important role on direct and indirect GHGs production and emission. Moreover, model factors related to the aerobic biomass growth show a relevant influence on GHGs in terms of power requirements. Thus, a good WWTP design and management aimed at limiting the GHG emission should carefully take into account the aeration system model to reduce GHG emission associated with electrical power demand. Also, the N2O emission associated with the effluent has the highest relative uncertainty bandwidth (1.7), suggesting one more need for a mechanistic model for N2O production in biological treatment.
منابع مشابه
Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios
In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient con...
متن کاملFeasibility of treating the produced sludge in municipal wastewater treatment plant using ozonation method
Background and Objective: Wastewater treatment and stabilization always imposes costs and consequently a lot of energy on wastewater treatment plants. To achieve the purification and stabilization of as much sludge as possible, breaking complex components into simpler components is considered a critical step. Therefore, this study aimed to evaluate the feasibility of treating the produced sludg...
متن کاملTo Review the Situation of Carbon Footprint in Iran Trade Balance by CGE Approach
Pollutants of Carbon flow virtually by streaming the Goods and services among the countries. Due to the Carbon Footprint (CFP) in economical divisions as well as subdivisions in Iran, the main objective of this paper is to specify the effects of Carbon footprint on import and export of various sections in the framework of Computable General Equilibrium Model. It’s used the social accounting mat...
متن کاملExperimental Study and Adsorption Modeling of COD Reduction by Activated Carbon for Wastewater Treatment of Oil Refinery
Application of Granular Activated Carbon (GAC) in adsorption process has been studied for the advanced treatment of municipal and industrial wastewater. Because of entering poisonous compounds such as furfural, phenol and sulfides into the oily wastewater of Tehran refinery, biological aeration basins of wastewater treatment unit may not have the desired performance of COD reductio...
متن کاملElectrical Energy Management in Industrial Wastewater Treatment Plant
In this study, the energy consumption of Nasirabad Industrial Park (NIP) treatment plant was evaluated. A combination of up-flow anaerobic baffled reactor (UABR) and aerobic integrated fixed-bed activated sludge (IFAS) processes were employed in NIP. To find out the average electrical energy use per m3 influent wastewater, the rate of energy usage of the plant was calculated by data ...
متن کامل